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The nuclear-electronic orbital explicitly correlated Hartree-Fock (NEO-XCHF) method is modified and
extended to study electron-positron quantum systems. The NEO-XCHF method is more computationally
efficient than the explicitly correlated methods previously applied to positron systems because only the
electron-positron dynamical correlation is treated explicitly in NEO-XCHF. As a result, the form of the
wave function is much simpler with fewer parameters, and the variational optimization of the molecular
orbital parameters is performed through an iterative scheme rather than a stochastic optimization. The NEO-
XCHF approach is used to calculate the positron annihilation rate for positronium hydride (PsH). The resulting
annihilation rate for PsH is within 20% of the most accurate values available and is calculated at a fraction
of the computational cost. These results suggest that qualitatively accurate positron annihilation rates can be
calculated treating only electron-positron correlation explicitly, leading to significant computational savings
by neglecting electron-electron dynamical correlation. Thus, the NEO-XCHF approach could potentially
enable the calculation of qualitatively accurate positron annihilation rates for larger positron systems.

I. Introduction

The theory of bound positrons has multiple applications in
diverse fields such as chemistry, solid state physics, and
astrophysics.1-4 In medical fields, positron emission tomography
has been shown to be a useful technique for molecular imaging
of biological processes with high diagnostic accuracy.5,6 These
wide-ranging applications will continue to grow as new high-
intensity sources and better detection techniques are developed.
The main observable that a successful theory of bound positrons
should be able to predict is the positron annihilation rate, a
highly local property that depends very strongly on the accuracy
of the electronic-positronic wave function in the region of small
electron-positron distances. The experimentally measured
positron annihilation rates for molecular systems vary widely,
and the interpretation of the experimental data has been debated
in the literature.7,8

Although high-level theoretical calculations have been per-
formed for small positronic systems,9-24 such as positronium
hydride (PsH) and e+-LiH, theoretical studies of larger
positronic systems are limited. A major computational challenge
for studying positronic systems is accounting for the significant
electron-positron correlation. In contrast to purely electronic
systems, the electron-positron attractive Coulomb interaction
leads to large probability densities at small electron-positron
distances. As a result, dynamical correlation plays a considerably
more important role for mixed electron-positron systems than
for purely electronic systems. Another computational challenge
arises from the importance of three-body interactions in mixed
electron-positron systems. Since the Pauli principle does not
prevent three-body collisions when both electrons and positrons
are involved, the three-body effects must be adequately treated
in these types of systems.25

Previous calculations indicate that conventional electronic
structure methods for treating dynamical correlation are not
adequate for mixed electron-positron systems. For example,
recently the nuclear-electronic orbital (NEO) method26 was
modified and extended to positron systems.27 In this approach,
all electrons and the positron are treated quantum mechanically
with molecular orbital techniques, while the nuclei are repre-
sented as classical point charges. For convenience, the notation
“NEO” is retained for this positronic extension. For PsH, a
NEO-HF (Hartree-Fock) calculation with a reasonably large
basis set produced an annihilation rate that is almost an order
of magnitude smaller than the most accurate results for this
system, while a perturbative treatment of dynamical electron-
positron correlation with the NEO-MP2 (second-order perturba-
tion theory) approach led to only a small improvement.27 A
NEO-FCI (full configuration interaction) treatment with a
tractable basis set produced an annihilation rate that is still less
than 50% of the most accurate results for this system.27 The
FCI convergence for the same system was previously investi-
gated by Mitroy and co-workers,22 who also identified difficulties
withconvergenceoftraditionalCIapproachesforelectron-positron
systems.

Successful calculations of positron annihilation rates in small
systems such as PsH have relied on an explicit treatment of
dynamical correlation. Typically the wave function is chosen
to have an analytical form that is capable of reproducing the
behavior of the exact wave function in all regions of coordinate
space, including very small interparticle distances. For example,
the explicitly correlated wave functions used in ref 21 and ref
24 are capable of describing the cusp properties with high
accuracy. In these types of studies, the parameters of the wave
function are optimized variationally. The most accurate calcula-
tions involve stochastic variational optimization of at least
hundreds of parameters defining the explicitly correlated wave
functions. While these calculations typically produce highly
accurate annihilation rates in excellent agreement with each
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other,21,24 they are computationally expensive and are not easily
extended to systems with more than a few electrons.

One common feature of these previous explicitly correlated
approaches is that they treat the electron-electron and
electron-positron correlation on the same level. As mentioned
above, however, electron-positron dynamical correlation is
much more significant than electron-electron dynamical cor-
relation because of the attractive electron-positron Coulomb
interaction. Moreover, the positron annihilation rate depends
mainly on the electronic-positronic wave function in the region
of small electron-positron distances and hence is more de-
pendent upon an accurate treatment of electron-positron
dynamical correlation than electron-electron dynamical cor-
relation. Thus, we expect that qualitatively accurate positron:
annihilation rates could be calculated with a method that treats
only electron-positron correlation explicitly in the wave
function. Given the nature of positronic systems, which usually
include only a single positron, this simplification would result
in significant computational savings.

In this paper, we use the NEO-XCHF (explicitly correlated
Hartree-Fock) method28,29 to test this hypothesis by calculating
the positron annihilation rate for PsH. The NEO-XCHF method,
which was previously developed for including dynamical
electron-proton correlation in systems where selected hydrogen
nuclei are treated quantum mechanically on the same level as
the electrons,28,29 is easily modified to study electron-positron
quantum systems. One important difference between the NEO-
XCHF approach and the explicitly correlated approaches
previously applied to positron systems is that only the
electron-positron correlation is treated explicitly in NEO-
XCHF. As a result, the form of the wave function is much
simpler with fewer parameters, and the variational optimization
of the molecular orbital parameters is performed through an
iterative scheme rather than a stochastic optimization. This
approach is not expected to be more accurate than many other
methods that were used successfully to calculate positron
annihilation rates in small positron systems, but it is designed
to be more easily extendable to larger systems. Our objective
is to develop a qualitatively accurate method for calculating
positron annihilation rates that can be extended to larger systems
of biomedical and technological interest.

An outline of this paper is as follows. In section II, we present
the extension of the NEO-XCHF method to positron systems
and the expression used to calculate the positron annihilation
rate. In section III, we describe the application of the NEO-
XCHF method to PsH, which consists of a proton, two electrons,
and a positron. PsH is an ideal system for benchmarking
purposes because highly accurate energies and annihilation rates
have been calculated with a variety of methods. Conclusions
are presented in section IV.

II. Theory

The Hamiltonian for a system with one positron, Ne electrons,
and Nc classical nuclei is

where all quantities are in atomic units. The coordinates of the
electrons, positron, and classical nuclei are denoted as ri

e, rp,

and rA
c , respectively. The charges on the classical nuclei, which

are represented as point charges, are denoted by {ZA}. The
indices i, j refer to electrons, and the index A refers to classical
nuclei.

Our ansatz for the explicitly correlated electronic-positronic
wave function is28,29

where Φe is the electronic Slater determinant comprised of one-
electron spin orbitals, �p is the positron orbital, and G is the
Gaussian-type geminal expansion that explicitly couples the
electrons and the positron:

Here Ngem is the number of Gaussians in the expansion, and bk

and γk are parameters that can be determined variationally. Note
thatthisformofthewavefunctionincludesexplicitelectron-positron
correlation but does not include explicit electron-electron
correlation.

The total energy of a multielectron system containing one
positron is given by

This energy expression contains two types of parameters that
may be optimized to minimize the energy variationally. The
first type of parameter is comprised of the expansion coefficients
for the electronic and positronic spatial molecular orbitals, which
are typically expanded in terms of atomic orbital Gaussian basis
functions. The second type of parameter is comprised of the bk

and γk parameters defining the Gaussian-type geminal expansion
given in eq 3. To optimize the molecular orbital expansion
coefficients, we have derived modified Hartree-Fock-Roothaan
equations using the standard variational method to minimize
the energy in eq 4 with respect to both the electronic and
positronic molecular orbitals subject to the orthonormalization
constraints on these orbitals. The analogous Hartree-Fock-
Roothaan equations for a many-electron system with one
quantum proton are given in ref 29 and are easily modified for
positronic systems. For fixed values of the geminal parameters,
these equations are solved iteratively to self-consistency to
obtain the NEO-XCHF energy. The relatively small number of
bk and γk parameters defining the geminal expansion may be
optimized numerically on the NEO-XCHF energy surface using
a method such as simplex.

The two-photon annihilation rate for any bound state wave
function Ψ0 representing a system consisting of Ne paired
electrons in closed shells and a single positron is given by30,31

where r0 is the classical electron radius and c is the speed of
light. The integration is over the positronic coordinate rp and
all electronic coordinates. The operator
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〈Ψtot|Ĥ|Ψtot〉
〈Ψtot|Ψtot〉

(4)

λ ) 4πr0
2c 〈Ψ0| ∑

i)1

Ne

δ(ri
e - rp)Ôeip
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is the spin projection operator to the singlet state of the ith
electron-positron pair. The derivation of the expression for the
two-photon annihilation rate based on the NEO-XCHF wave
function given in eq 2 is provided in the Appendix.

III. Results

We calculated the total energy and two-photon annihilation
rate for PsH with the even-tempered electronic and positronic
basis sets developed for this system in ref 27. Each basis set
contains a set of s-type Gaussian basis functions with even-
tempered parameters32 variationally optimized at the NEO-MP2
level of theory. The kth exponent of the set of Gaussian
primitives is �k ) R�k, where R ) 0.018298 Bohr-2 and � )
2.66531 for the electronic basis functions and R ) 0.012420
Bohr-2 and � ) 3.91161 for the positronic basis functions. We
variationally optimized the bk and γk parameters defining the
geminal expansion in eq 3 for Ngem ) 1-4 with the 6s/6s
electronic/positronic basis set using a post-simplex optimization
approach.33 For Ngem ) 1-3, we performed a full optimization
of all geminal parameters simultaneously starting from many
different sets of initial parameter values. For Ngem ) 4, we
performed a more limited optimization in which we started with
the results from Ngem ) 3 and optimized only the fourth pair of
geminal parameters, and then we cycled through the four
Gaussians in the expansion and optimized each pair of geminal
parameters separately. The optimized values of the geminal
parameters are given in Table 1.

Table 2 presents the total energies and annihilation rates
calculated with the optimized Gaussian-type geminal functions
from Table 1 and various electronic and positronic basis sets.
As mentioned above, we optimized the geminal parameters using
a 6s/6s basis set, corresponding to six s-type Gaussian basis
functions for the electrons and the positrons. Using these
optimized geminal parameters, we increased the basis sets and
determined that the results improve slightly with the 9s/6s basis
set, corresponding to nine basis functions for the electrons and
six basis functions for the positrons, but do not improve further

within numerical accuracy with the 9s/9s basis set. We also
observed that the NEO-HF results with these basis sets are
similar to those obtained in ref 27 using even-tempered basis
sets with s-, p-, and d-type Gaussian basis functions variationally
optimized at the NEO-FCI (full configuration interaction) level
of theory. We expect that s-type Gaussian basis functions are
sufficient to describe the ground-state electronic-positronic
wave function because for a single fixed nucleus the two
electrons and the positron are expected to occupy s-orbitals.
Thus, Table 2 indicates that the results are nearly converged
with four geminal functions and the 9s/6s basis set for the NEO-
XCHF ansatz for the wave function.

Table 3 provides a comparison of the NEO-XCHF result with
four geminal functions and the 9s/6s basis set to other values
previously calculated. The NEO-FCI results from ref 27 obtained
with a considerably larger 6s3p1d basis set are provided. In
addition, Table 3 presents highly accurate results from the
literature: the well-converged stochastic variational method
calculations of Mitroy21 and the variational calculations with
explicitly correlated Gaussian functions of Bubin and Adamow-
icz.24 These results are viewed as the benchmark value.

The NEO-XCHF energy is not as low as the NEO-FCI
energy, but the NEO-XCHF annihilation rate is significantly
more accurate than the NEO-FCI annihilation rate. Specifically,
the NEO-XCHF annihilation rate is within 20% of the bench-
mark value, whereas the NEO-FCI annihilation rate is nearly
three times smaller than the benchmark value. The NEO-FCI
energy is lower than the NEO-XCHF energy mainly because
theNEO-FCImethodincludeselectron-electronaswellaselectron-
positron correlation, whereas the NEO-XCHF method includes
only electron-positron dynamical correlation. The NEO-XCHF
method leads to more accurate annihilation rates because the
annihilation rate is a measure of the local property of the wave
function in the region of small electron-positron distances,
where the electron-positron dynamical correlation is most
significant and is well-described by the explicitly correlated
geminal wave function. The NEO-FCI method provides a more
globally accurate wave function, leading to a lower total energy,
but does not describe the local properties of the wave function
as well as the NEO-XCHF method. Thus, the NEO-XCHF
method is particularly well-suited for calculating the annihilation
rates, which can be compared to experimental measurements.
A method that can predict qualitatively accurate annihilation
rates is still useful even if the total energy is not highly accurate
because the annihilation rate can be measured experimentally
and is relevant for technological applications.

The best NEO-XCHF result for the annihilation rate is within
20% of the most accurate calculations and was calculated at a
fraction of the computational costs. For instance, the calculations
of Bubin and Adamowicz24 involved numerical variational
optimization of parameters for at least 500 explicitly correlated

Ôei p
) (1 - 1

2
Ŝei p

2 )

TABLE 1: Values for Parameters (a.u.) Defining the
Gaussian-Type Geminal Functions Optimized with the 6s/6s
Basis Set

Ngem b1 γ1 b2 γ2 b3 γ3 b4 γ4

1 0.805 0.179
2 1.051 0.042 1.544 0.617
3 25.436 0.034 22.550 0.624 13.002 5.334
4 73.992 0.029 61.761 0.504 37.538 2.975 16.191 16.042

TABLE 2: Total Energies E and Annihilation Rates λ for
PsH with Different Basis Sets

E (a.u.) λ (ns-1)

methoda 6s/6s 9s/6sb 6s/6s 9s/6sb

NEO-HF -0.664337 -0.665640 0.3189 0.3199
NEO-XCHF 1G -0.693216 -0.694469 0.6883 0.6898
NEO-XCHF 2G -0.705863 -0.707095 1.1402 1.1401
NEO-XCHF 3G -0.712496 -0.713393 2.0122 2.0465
NEO-XCHF 4G -0.716097 -0.717307 2.0443 2.0662

a NEO-XCHF nG is with Ngem ) n, and the basis sets are defined
by the number of electronic/positronic basis functions. b The 9s/9s
results are the same as the 6s/6s results for the energies to within
10-5 a.u. and for the rates to within 10-4 ns-1.

TABLE 3: Total Energies E and Annihilation Rates λ for
PsH

method E (a.u.) λ (ns-1)

NEO-HFa -0.665640 0.3199
NEO-FCIb -0.758965 0.8993
NEO-XCHFc -0. 717307 2.0662
ECG (ref 24) -0.789197 2.4714
SVM (ref 21) -0.789198 2.4714

a NEO-HF result with the 9s/6s basis set. b NEO-FCI result with
the 6s3p1d basis set.27 c NEO-XCHF result with four geminal
functions and the 9s/6s basis set. The positron is bound to H- by
6.3 eV at this level of theory.
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Gaussian functions and as many as 5000 functions for the most
accurate result presented, while the qualitatively accurate NEO-
XCHF calculation required a direct iterative variational opti-
mization of only 12 molecular orbital coefficients and numerical
variational optimization of six geminal parameters. The main
source of error in the NEO-XCHF annihilation rate is due to
the neglect of electron-electron correlation. In addition, the
NEO-XCHF approach neglects some three-body effects, al-
though three-particle terms are included in the energy expres-
sion. As stated in the Introduction, our objective is not to obtain
the most accurate results but rather to obtain qualitatively
accurate annihilation rates with a computationally efficient
approach that will enable us to study larger systems. The present
results indicate that qualitatively accurate positron annihilation
rates can be calculated treating only electron-positron correla-
tion explicitly, leading to significant computational savings by
neglecting electron-electron dynamical correlation.

IV. Conclusions

In this paper, we used the positronic extension of the NEO-
XCHF method to calculate the positron annihilation rate for
PsH. The calculated annihilation rate is within 20% of the most
accurate values available. The NEO-XCHF method is more
computationally efficient than the explicitly correlated methods
previously applied to this system because only the electron-
positron dynamical correlation is treated explicitly, so fewer
parameters must be optimized during the variational procedure.
Thus, the NEO-XCHF approach could potentially enable the
calculation of qualitatively accurate positron annihilation rates
for larger positron systems. Given the wide range of experi-
mentally measured positron annihilation rates for molecular
systems,7,8 such qualitative predictions are expected to be useful
for biomedical and technological applications.

A number of potential challenges will arise upon the extension
of the NEO-XCHF approach to more complex systems. For
some systems, multiconfigurational wave functions may be
required to include static correlation. Our recent density matrix
formulation of the NEO-XCHF approach34 allows the use of
more general forms of the wave functions, such as open-shell
and multireference wave functions. Another issue that could
arise is the lack of size-extensivity for calculating binding
energies in larger systems. This issue could be problematic for
calculating the energetics of a neutral positronium binding to
larger systems but will not be problematic for the more
experimentally relevant case of a charged positron binding to
larger systems. In addition, the use of methods that combine
two or more quantum mechanical levels, such as the fragment
molecular orbital method,35 may be required for the study of
more complex systems.

Further computational savings could be achieved using
multicomponent density functional theory (DFT) in conjunction
with an electron-positron functional derived from the explicitly
correlated wave function. This type of NEO-DFT approach has
been successfully applied to multicomponent systems involving
quantum electrons and protons.36 Another advantage of NEO-
DFT is that electron-electron correlation can be included in a
computationally efficient and consistent manner,37 thereby
enhancing the accuracy of the calculations. These future research
directions are aimed at enabling theoretical calculations on
experimentally relevant positron systems.
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Appendix

One-Positron, Many-Electron NEO-XCHF Annihilation
Rate. The two-photon annihilation rate for any bound-state wave
function Ψ0 for a system with Ne electrons and a single positron
is given in eq 5. This annihilation rate is proportional to the
expectation value of the delta function of all electron-positron
distances

where δeip ≡ δ(ri
e - rp). Using the NEO-XCHF wave function

in eq 2, this expectation value can be expressed as

where the one-, two-, and three-particle operators resulting from
combining the delta function operator δeip and the geminal
operator

are defined as

We now provide the explicit expressions for these terms using
the restricted Hartree-Fock (RHF) formulation for closed-shell
electron systems. In general, each spin orbital is expressed as
the product of a spatial orbital and a spin function. In the RHF
formulation, each electronic spatial orbital is doubly occupied,
resulting in Ne/2 doubly occupied spatial orbitals. In this case,
the terms in eq A2 can be expressed as summations of integrals
in the basis of electronic spatial orbitals ΨR

e and the positronic
spatial orbital Ψp. The spin projection operator
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leads to the retention of only the electronic spin orbitals with
the opposite spin as the positron. The one-particle term is

where

The two-particle term is

where

The three-particle term is

where

and the remaining Ω3 integrals are defined analogously.
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e, rp) ×

[ψa
e(r1

e)]2[ψb
e(r2

e)]2[ψp(rp)]2 (A9)

Ω2
abba ) ∫∫∫ dr1

e dr2
e drp Ω2(r1

e, r2
e, rp) ×

ψa
e(r1

e)ψb
e(r2

e)ψb
e(r1

e)ψa
e(r2

e) [ψp(rp)]2 (A10)

∑
i*j*k

Ne

〈Φe�p|Ω3(ri
e, rj

e, rk
e, rp)Ôeip

|Φe�p〉 )

∑
a*b*c

Ne/2

[Ω3
abcabc - Ω3

abcbac + Ω3
cabbac - Ω3

cabacb +

Ω3
cabbca - Ω3

cabcba] (A11)

Ω3
cabbca ) ∫∫∫∫ dr1

e dr2
e dr3

e drp Ω3(r1
e, r2

e, r3
e, rp) ×

ψc
e(r1

e)ψa
e(r2

e)ψb
e(r3

e)ψb
e(r1

e)ψc
e(r2

e)ψa
e(r3

e)[ψp(rp)]2 (A12)
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